PAL-V # Pressemappe a joy to drive, a joy to fly # Werden wir endlich mit unseren Autos fliegen können? Fliegendes Auto PAL-V Liberty startete Straßenzulassung und kann auf der GIMS 2020 angesehen werden. "Die Ära der fliegenden Autos beginnt. Viele Unternehmen stellen ihre Vision von der Mobilität der Zukunft vor. Können Sie sich vorstellen, Ihr Auto in den Himmel steigen zu lassen? Werden wir am Himmel durch Autobahnen fliegen? Eines ist sicher, die Mobilität wird sich ändern und PAL-V wird als einer der Hauptakteure anerkannt. Seit 2008 entwickelt PAL-V ein fliegendes Auto. Im Jahr 2012 gelang der erste Durchbruch: die Flugund Fahrversuche mit dem PAL-V One. Seitdem hat PAL-V große Schritte unternommen und seine Produktionsanlage realisiert, in der das erste Produkt, das PAL-V Liberty, gebaut wurde. Der Auftragsbestand wächst, und letzte Woche startete PAL-V die European Road Admission, ein wichtiger Meilenstein auf dem Weg zum Beginn der Auslieferung. Auch die Luftzertifizierung hat die letzte Stufe erreicht, den Konformitätsnachweis. Robert Dingemanse, CEO von PAL-V: "Der Begriff fliegende Autos wird für zwei verschiedene Anwendungen verwendet. Die ersten fliegenden Autos, die fliegen und fahren, werden wie Autos für die persönliche Mobilität von Tür zu Tür zwischen Städten und Gemeinden eingesetzt. Stellen Sie sich vor, Sie leben in Genf und fahren mit Ihrem fliegenden Auto von Ihrer Garage zu einem Termin nach Cannes (Südfrankreich). Fahren Sie 10 Minuten bis zur nächsten (Gras-)Landebahn, starten Sie und machen Sie sich auf den Weg nach Cannes. Nach 2 Stunden landen Sie in der Nähe von Cannes und in Minutenschnelle stellen Sie Ihr Flugzeug wieder auf den Auto-Modus um. Noch 10 Minuten Fahrt und Sie kommen bei Ihrem Termin in der Stadt an. Eine Reise, die normalerweise 5,5 Stunden dauert, dauert jetzt nur noch 2,5 Stunden. Außerdem können Sie so den Blick aus der Vogelperspektive auf die Alpen und die französische Landschaft sowie die Freiheit des Fliegens genießen. Ein Traum wird wahr." Laut Dingemanse sind Zertifizierung, Sicherheit, Benutzerfreundlichkeit, Leistung und Kompaktheit auf der Straße entscheidende Designfaktoren bei der Entwicklung fliegender Autos. "Niemand will ein Auto fliegen, das nicht zugelassen ist, das schwer zu fliegen ist oder das nicht auf einen Standardparkplatz passt", sagt Dingemanse. Die andere Anwendung sind fliegende Autos, die nur zum Fliegen und für den Einsatz in der städtischen Umgebung bestimmt sind. Mike Stekelenburg, CTO von PAL-V: "Wir gehen davon aus, dass das Fliegen über Städte in 8-12 Jahren beginnen wird. Diese Fahrzeuge werden als städtische Lufttaxis oder eVTOLs (electric Vertical Take-Off and Landing) bezeichnet. Sie sind für den Einsatz als öffentliche Verkehrsmittel konzipiert, die, anstatt von Tür zu Tür, von Plattform zu Plattform fliegen. Sie sind eine Alternative zu Hubschraubern, U-Bahnen und Bussen." PAL-V hat ebenso Patente für eine wettbewerbsfähige Lösung für diesen Markt angemeldet. Das Unternehmen hat sich kürzlich mit dem Niederländischen Luft- und Raumfahrtlabor in Stekelenburg zusammengeschlossen: "Während das PAL-V Liberty für die Reise von Tür zu Tür konzipiert ist, ist dieses eVTOL für die städtische Luftmobilität nützlich." Laut Dingemanse werden wir 2021 unsere Autos in die Luft bringen, und der PAL-V Liberty wird in den kommenden Monaten auf den Straßen zu sehen sein. Bevor wir jedoch Lufttaxis in der städtischen Umgebung sehen, müssen wir wegen der vielen Herausforderungen wie Vorschriften, Infrastruktur, Technologie, Lärm, Sicherheit, städtische Turbulenzen und soziale Akzeptanz noch weitere 10 Jahre warten. #### For more information contact: More information and high res images can be found at www.PAL-V.com For footage please contact: Pressinfo@PAL-V.com Press contact: Joris Wolters: tel. +31 162 580 560 #### Background information: #### About PAL-V PAL-V International B.V., the company that initiated the development of the PAL-V, is located in Raamsdonksveer, The Netherlands. The company was founded in 2007 to commercialize the concept developed since 1999. The management consists of a team of experienced Dutch entrepreneurs with expertise in aviation, automotive, research, and marketing. PAL-V succeeded in gathering the best talent available. Testing its "proof of concept" vehicle for driving in 2008/2009 and for flying and driving in 2011/2012 it has proven technical feasibility and certifiability within the existing regulatory framework. The company is funded by a group of professional and private investors and also received funding from the Dutch Ministry of Economic Affairs. Three Dutch ministries are supporting the project based on its technical innovation and economic potential. ## Questions Answers # An inherent safety aspect is that in case of bad weather conditions you can drive (part of) your journey. This does make your planning much more certain but also increases your safety options dramatically. #### Can you tell more about the engine solution? The dual engine propulsion drive train is based on two fully certified airplane engine from Rotax. one of the leading manufacturers in aviation engines. #### What about safety? The PAL-V LIBERTY has been developed by using proven state-of-the-art technologies from the aerospace and automotive industries. In the air, the underlying gyroplane technology guarantees a stable flying platform that supports safe landing even in the very unlikely event of a total power failure. Which in itself is very unlikely thanks to its unique two engine propulsion solution. A gyroplane as such is already a very safe way of flying. However by a rigid focus on flight safety PAL-V has taken it to the next level. By making small compromises on specification it created the safest gyroplane ever built. Unlike most small airplanes and gyroplanes the PAL-V LIBERTY is certified under the very strict safety regime of EASA (Europe) and FAA (USA). Many countries in the world follow the same rules. On the road, the PAL-V LIBERTY is complying with the applicable road safety requirements. #### Will regulators allow the use of PAL-Vs? The PAL-V LIBERTY is designed within the current certification and regulations frameworks for the vast majority of countries in the world. No rules or regulations need to be changed to be allowed to use the vehicle. #### What market does PAL-V aim for with the Liberty? PAL-V distinguishes two markets in personal flying mobility, urban mobility and City-to-City mobility. At this moment PAL-V aims for City-to-City mobility, where you take-off outside a city, land in front of another city and finally drive into the city. #### Why start with the city-to-city market? There are a few reasons why PAL-V deliberately choose for City-to-City mobility. One of them is that there is no need for additional infrastructure to support a vehicle like the PAL-V. Because the PAL-V can be fueled up at any gas station and you can park your PAL-V in your own garage there is no need for a hangar or fuel station at the airstrip. The PAL-V only needs a grass strip to land or take-off, which are abundantly available and often can be created easily. Because the PAL-V complies to existing regulations it is also allowed to land at normal airports or airfields. Another reason is that there is no need to change any regulations to the PAL-V to open up the City-to-City mobility, which makes the PAL-V a viable flying car without barriers. #### Why not urban mobility? We are convinced that there will be a market for urban mobility. However, not for the coming decade. There are some major challenges that need to be addressed. One of them is the noise that aircraft make. The PAL-V is relatively quiet compared to helicopters but it still produces propeller noise. Although you might think that electric engines would resolve that issue, it doesn't. The main source for the noise pollution comes from the blades of the rotor and propeller, especially when using drone or helicopter technology. The other challenge is the level of safety required to fly over urban areas. On top new regulations have to be out in place and the infrastructure needs to be created in the form of vertiports and traffic management. #### What specs does it have? Please view: https://www.pal-v.com/en/explore-pal-v #### Why is the gyroplane concept chosen? Safety first: in case of engine failure the gyroplane can be landed normally in a very small area equivalent to a tennis court. Landing without an engine can be done with +/- 30 km/h (18mph) ground speed on a very small spot (30 meters or 100ft). This makes emergency landing, in combination with the unique double redundant drive train of the PAL-V LIBERTY, multiple time safer than a comparable aircraft or helicopter. Advantages compared to a conventional airplane: Safety again: contrary to fixed-wing airplanes, it cannot stall and crosswind landings are easier and safer than with a fixed wing airplane. Convenience and comfort: in turbulent air it still flies smoothly with excellent stability due to its high rotor speed. You will only experience 20% of the turbulence of a comparable fixed wing aircraft. Versatility: Because a gyroplane can fly very slowly, it needs very little space to land. Take-off distance ranges from only 90m to 200m (300ft-650ft). As it deals much better with turbulence and cross wind you can safely fly a PAL-V LIBERTY while fixed wing airplanes have to stay on the ground. Fun and effectiveness: wide speed range, with a low minimum horizontal speed (from 50 km/h up to 180 km/h or 30mph-112mph). The PAL-V LIBERTY exhibits very positive slow flight envelope characteristics, even slow glides are possible up to safe vertical descends. #### Advantages compared to a helicopter: Safety and ease of operation: a gyroplane is very easy and safe to fly because it is a stable mechanical system. A comparable helicopter is the opposite: this is an unstable system, kept in the air by the skills of the pilot using both hand and feet. A helicopter is much harder to fly and therefore much riskier and challenging to operate. Versatility: unlike a helicopter, a gyroplane cannot take off or land vertically. Although you may think this to be an important limitation, in practice it is NOT thanks to the driving capability of the PAL-V LIBERTY. Since you can drive the PAL-V LIBERTY to your destination, it is much more useful and versatile even than a helicopter: taking off nearby is good enough and it does not require anybody to stay behind to guard your aircraft at the landing spot. Also landing a helicopter at the spots where you would like to land is very often not allowed or possible because of noise and safety, making helicopter use in practice very cumbersome. Therefore helicopters are not as practical and useful as a PAL-V LIBERTY. Cheaper to own and operate: a PAL-V Gyroplane has significant lower cost of ownership compared to a helicopter, yet can accomplish most missions that a helicopter can plus other ones. Since you park it in your garage, costly hangar space it not required. #### What happens when more PAL-Vs take to the sky? The great news is that because PAL-V is designed within todays existing regulatory framework, all the tools are in place for safe management of transportation in the sky including 2nd Generation air traffic control. Rules and regulations are in place under the International Civil Aviation Organization (ICAO) to allow the use of the first PAL-V LIBERTYS. #### Is it possible to take off and land everywhere? No. Apart from the fact that this is not allowed by law, the PAL-V needs a space for take-off measuring about 90-200 by 20 meters (100ft-650ft by 60ft) without surrounding obstacles. In practice all small airstrips, aerodromes, glider sites and/or ultralight airfields will suffice. The PAL-V LIBERTY can operate from either concrete or grass airstrips. As the PAL-V popularity increases, it is expected that more and more small uncontrolled airstrips will be created. Many countries also allow for special permits on private property. #### Do people need a license to fly the PAL-V? Yes, they certainly do need a license to fly. This can be obtained through one of the many flight schools in the world. To be able to operate an airplane you will need some basic knowledge of navigation, instruments, meteorology, aerodynamics and performance. All pilots of aircraft need training and the PAL-V LIBERTY is — for the aviation aspect — no exception. To acquire a license people have to pass a theoretical exam and have a reasonable amount of training first with an instructor and later as a single pilot (solo) to learn to fly a gyroplane. The gyroplane license can usually be obtained within 30 to 40 hours of training, depending on skill and talent. ### Will such a "flying car" receive certification for road and sky? The PAL-V LIBERTY is designed within existing certification requirements on the road as well as in the sky. For flying, CS-27 (Europe) and FAR-27 (USA) are the standards on which the Type Certificate is based. For driving, the road legislation directives of the European Commission and National Highway Transportation Safety Administration (NHTSA) standards are used. The PAL-V ONE "proof of concept" prototype confirmed that the PAL-V LIBERTY can be built to meet these standards without exemptions. #### Where will it be produced? The PAL-V LIBERTY will be assembled in the Netherlands. Specific parts and systems are manufactured by leading companies from a number of countries. #### What about noise? The noise will be comparable to a small fixed wing plane. It will be much less than a helicopter. #### How long does it take to change modes? To convert from drive to fly mode or vice versa will take 5-10 minutes. #### What about Vertical Take-Off and Landing (VTOL)? Vertical take-off requires a lot of energy which would significantly decrease the range of the PAL-V. Since the PAL-V is a flying car there is far less need for vertical take-off. You simply drive to a place where you can take-off. After landing you can reach your destination by driving there, true door to door mobility. Instead of platform to platform mobility. #### What about electric flying? In aviation weight is in direct relation with performance, influencing range, speed, payload etc.... At this moment batteries are too heavy to be used for flying cars or human drones. With the current battery performance there would be no practical range left to fly or you would not be able to carry any passengers or payload because of the efficiency and the weight of the batteries. #### When does PAL-V expect to fly with electricity? In the road map of PAL-V we have concepts ready to be implemented with electric propulsion. However, at the current development speed of batteries, we do not expect to see electric PAL-Vs within the upcoming 10 years. Apart from battery efficiency, the technology also needs to mature before it can pass the strict aviation certification. #### What about a three or four seater? PAL-V has a road map for future products but at the moment the main focus is the PAL-V Liberty which for now can carry two passengers which is sufficient to cover a very big portion of the market. Inquiries: Pressinfo@pal-v.com Press Relations T: +31-162-580 560 Pressinfo@PAL-V.com